TWO EXACT SOLUTIONS OF THE NAVIER — STOKES
EQUATIONS FOR THE CONCENTRATION OF EDDIES
IN A VISCOUS LIQUID
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In the final analysis, vorticity in a liquid or gas is broken down by viscosity [1]; however, there
are known cases of the appearance and long-term existence of three-dimensional eddies in
water, air, and other media. Therefore, the conditions under which vorticity can even rise
with viscosity are of interest. For example, with the flow of a liquid out of an opening in the
bottom of a rotating cylindrical vessel, the total momentum with respect to the vertical axis

of the vessel increases with the time {2, 3]. For some flows, there exist contradictory opin-
ions: In[4, 5] it is asserted that an eddy around a flat sink in a viscous liquid is damped,
while, in [6, 7], it is argued that, with determined Reynolds numbers, there is an increase

in the vorticity around a sink. The present article gives exact solutions of the Navier—=Stokes
equations, demonstrating the development of eddies in a viscous liquid,

§1, There is great interest in the case where, from the flow of a viscous liquid with.a vortex | Q| closeto
zero, a flow with a finite vorticity is formed. Therefore, we connect the statement of the problem to the gues-~
tion of the stability of the flow of a viscous liquid originally having & =0, with respect to determined perturba-
tions. Using the example of a problem with axial symmetry in a cylindrical system of coordinates (r, 0, z),
we shall demonstrate a method for combining a search for exact solutions of the Navier—=Stokes equations
with a consideration of the stability of the flow of a viscous liquid. The main flow, for which the components
of the vortex are equal to zero, has the form

(Qo=7y=0,
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where y =2%rvy is the circulation of the velocity; @ is the potential for the components of the velocities vy
and v;. One main flow or another can be obtained by the choice of the potential .

The Navier—Stokes equations and the continuities with axial symmetry are represented in the form
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To remain within the framework of the Navier—Stokes equations, out of all the possible perturbations to
the main flow (1.1) only those perpendicular to the flow must be taken, i.e., the perturbation y. Tn addition, we
require that the value of v not depend on z; we separate the first two equations of the system (1.2). The final
equation for the perturbation y has the form

ay abay o {1 ay
wt T = T ) (1.3)

Moscow. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 6, pp. 77—81; No-
vember-December, 1977, Original article submitted October 18, 1976.

0021-8944/77/1806-0795$07.50 ©1978 Plenum Publishing Corporation 795



§2, The problem of the rotation of the liquid around a flat source is obtained from the general problem
if &= (m/2_1r) Inris substituted into formula (1.3), where m is the abundance of the source. Then Eq. (1.3) is

transformed to the form
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where Re=m/ (2rv)is the Reynolds number,

Steady-state solutions of Eq. (2.1) have been examined in detail in [6). There exist several methods for
obtaining non-steady-state solutions, A characteristic non-steady-state solution which, more than any other,
brings out contradictions, is the solution of the problem of rectilinear vortex diffusion in the presence of a
sink, All the methods, used in the majority of papers give the following solution of the problem:
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where I' @) is an Euler gamma function; (q, z) = j z"'e~"dz is an incomplete gamma function. We assume

P :
that the solution (2.2) extends also to Re< —2, As is shown in {6}, and as can be seen from the second formula
of (2.2), it is a solution of the problem of rectangular vortex diffusion in the presence of a source only in the
interval ~2<Re<«, The vortex intensity in the interval —< <Re< —2 rises, in accordance with (2.2). The
reason for the erroneous nature of [4, 5] is that there the solution was obtained by passing to the limit ry—0
in the solution for ry=const, where r;is the radius of a cylinder, enclosing a singularity at zero.

In accordance with [8], using the method of intermediate asymptotics, the solutions can be continued be~
yond the critical value of the parameter. We denote the linear dimension by a. We shall start from the equa~
tion for the vortex Q,:
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We shall seek the solution of Eq. (2.3) in the form
Qz = r2F(u), (2.4)
where u=r?/ (4vt). Substituting (2.4) into (2.3), we obtain
(QupPF' + {(2¢ — Re + 2) -+ (2u)2u)F’ 4 a(a — Re)F = 0. 2.5)
The general solution of Eq. (2.5) has the form
F = y-(a—Ret2)/s g-ul2y(— (22 — Re + 2)/4, Rel4, u), (2.6)

where y(k, m, x) is the solution of the Whittaker equation 4x%y" = (x? — 4kx +4m? — 1)y, i.e., the reduced form of
a degenerate hypergeometric equation. To isolate the required solution from formula (2.6) we substitute the
initial conditions y=4v,, or & =0 with r=0. The final formulas have the form

{ I r(_ge+_2 r_’) Res |
o Y | 4 P (L)e'*“
8~ omr 1"(— Re + 2) a ’

{ L 2 - (2.7)

i Voo Re r# r Re
{  Re42 24vt/\ a
2p [ —
v e ( 2 )

From the solution (2.7) it can be seen that the intensity of the vortex decreases not to zero, as in the
case Re> —2 [see (2.2)], but down to a steady-state vortical solution [6]
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If we solve Eq. (2.1) with the initial condition v9='y°°/ (2xr) with Re< ~2, not with an internal limiting
cylinder but with a singularity at zero, by the method of a Laplace transform, then we obtain the solution (2.7).
It can be shown by the same method that the asymptotic of any non-steady-state problem is a steady-state
vortical solution with Re< —2. From the latter fact a conclusion could be drawn with respect to the mech-
anism of the vorticity intensification, on the basis of the instability of the flow of a viscous liquid, were it
not for the following serious objection: At zero there is a singularity, which, as has been pointed out in sev-
eral communications, can give rise to instability. Therefore, we return to the problem where there is no
singularity.

§3. The model used for a description of vortical motions in the atmosphere (a tornado, waterspouts) is
_obtained from a general statement of the problem of Sec. 1, if for the principal flow we take the potential &=
a(r2/2 — z?%), describing the flow at the critical point, and substitute into Eq. (1.3)
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We have the following boundary conditions:
at infinity
vy = Y201, 00 = 0; (3.2)
at the axis
Vgl ,—0 = 0. (3.3)

The steady-state solution of Eq. (3.1) with the boundary conditions (3.2), (3.3) depends ona, if a =0, i.e.,
if the flow spreads out over a plane, then

vy =0; (3.4)
ifa<0, i.e,, if there is ascending flow, then
P = 7= (1 —e"¥2), (3.5)

The development of steady-state vortical solutions with determined values of the parameters in such
situations is a characteristic factor [6]. The solution (3.5) was first found in [9] and is used by many authors,
for example, for the construction of approximate models of a tornado or as an example of the existence of
steady-state vortical motions in a viscous liquid.

Non-steady-state vortical solutions of Eq. (3.1) have not been found, probably for the following reasons,
There is no self-similar solution for Eq. (3.1). A Laplace transform leads to an equation which can be solved
numerically, Methods of intermediate asymptotics do not give the desired result, We apply a group analysis
to Eq. (3.1) [10]. Using the infinitesimal operator admitted by (3.1) we obtain the characteristic solution for
this equation; this operator has the form

Xo— Lot 2

2ut 8
a at +ret 5 (3.6)

ar”

The operator (3.6) corresponds to the single-parametric continuous group of transforms '
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Using the transform (3.7), from the solution (3.5) we construct the non-steady-state solution

v 1) = a1 — e O]
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The solution (3.8) can be used for the solution of different problems, If the main flow is descending g > 0, then
it follows that exp (2at) =1 and 1~ 20 =< 0. With a> 1/2, i.e., with different initial given values of y(r, 0), ex-
pressions (3.7) and (3.8) tend toward zero when the time t tends toward infinity; i.e., they approach the steady-
state solution (3.4). The special case where o=0.5 is a solution of the problem of rectilinear vortical fila~
ment diffusion in the presence of a.descending flow above the plane z =0, With an ascending main flow ¢ < 0,
exp (2at)=1 and 1 — 20 =0; expression (3.8) tends toward the steady-state solution (3.5), differing from zero,
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The special case obtained with a=0.5 represents the diffusion of a vortical filament where the main flow is
ascending. The vortical filament diffusion does not take place down to a zero value of the vorticity, but down
to the steady-state solution (3.5). By choice of the parameter a, the initial data for y(r, 0) can be taken in
such a way that

0 << Ivg(r, Ol << & and 0 << |Q(r, 0)I < &,
where € is a previously given small number, For this, the value of o must satisfy the condition

‘ (e — a)/ (1 — 20) 1} < €3
In the latter case, the vorticity starts to be concentrated around the axis of rotation, down to the steady-state
solution (3.5).

Since Egs. (1.3), (38.1) are linear, the latter fact can be regarded from the point of view of hydrodynamic
instability. This result argues that the flow of a viscous liquid with |Q]=0 and determined values of the param-
eters can be unstable with respect to vortical perturbations. An explanation of the localization and concentra~
tion of the vorticity in a viscous liquid can be based on the mechanism of the interaction between viscous and
inertial forces, with which, with some values of the parameters of the flow, equilibrium is established between

them in a vortical flow,
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