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In the final analysis ,  vort ici ty in a liquid o r  gas is broken down by viscosi ty [1]; however, there  
a r e  known cases  of the appearance and long- t e rm existence of three-d imens ional  eddies in 
water ,  a i r ,  and other  media .  Therefore ,  the conditions under which vort ici ty can even r i se  
with viscosi ty  a re  of in teres t .  For  example, with the flow of a liquid out of an opening in the 
bottom of a rotating cyl indrical  vessel ,  the total momentum with respect  to the vert ical  axis 
of the vessel  inc reases  with the t ime [2, 3]. For  some flows, there  exist cont radic tory  opin- 
ions: In [4, 5] it is a s se r t ed  that an eddy around a flat sink in a viscous liquid is damped, 
while, in [6, 7], it is argued that, with determined Reynolds numbers ,  there  is an increase  
in the vor t ic i ty  around a sink. The presen t  a r t ic le  gives exact solutions of the Nav ie r -S tokes  
equations, demonstra t ing the development of eddies in a viscous liquid. 

w There  is g rea t  interest  in the case  where,  f rom the flow of a viscous liquid w i t h a  vortex [i~ 1 c lose to  
zero,  a flow with a finite vort ici ty is formed.  Therefore ,  we connect the  statement of the problem to the ques-  
tion of the stabil i ty of the flow of a viscous liquid originally having ~2 = 0, with respec t  to determined pe r tu rba -  
t ions.  Using the example of a problem with axial s y m m e t r y  in a cyl indrical  sys tem of coordinates (r, 0, z), 
we shall demonst ra te  a method for  combining a s ea rch  for  exact solutions of the Navier--Stokes equations 
with a considera t ion of the stability of the flow of a viscous liquid. The main  flow, for which the components 
of the vortex a re  equal to zero,  has the form 

i P-o = 7 = O, 

vr = ~-r '  ( 1 . 1 )  
I [ o r  

where V = 2rrv0 is the c i rcula t ion of the velocity; 
and v z.  One main  flow or  another can be obtained by the choice of the potential ~. 

The N a v i e r - S t o k e s  equations and the continuities with axial s y m m e t r y  a re  represented  in the form 

T ' T ' O r  \ ~r '. -~- v z T z  = r Oz t,2nr] "-~ 

0,o01 
' 7 ~ /+ -~r~ , j '  

OV Oz7 

a.~ a.~ ae, T + a ( ~ ' ' )  t az ar T = O. 

is the potential for  the components of the velocities Vr 

(1.2) 

TO remain  within the f ramework  of the Nav ie r -S tokes  equations, out of all the possible perturbat ions to 
the main  flow (1.t) only those perpendicular  to the flow must  be taken, i.e., the per turbat ion  % In addition, we 
require  that the value of T not depend on z; we separa te  the f i rs t  two equations of the sys tem (1.2). The final 
equation for  the perturbat ion V has the form 

0v 0.a~,, a ( ~  0v/ 
0"--[ - j -  a r  ar  - -  v r  T r  k r Or ] (1.3) 
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w The p r o b l e m  of the ro ta t ion  of the liquid around a f lat  source  is obtained f r o m  the genera l  p r o b l e m  
if ~= (m/2~)  l n r i s  subst i tu ted into fo rmula  (1.3), where  m is the abundance of the source .  Then Eq. (1.3) is 
t r a n s f o r m e d  to the f o r m  

I o7 +4- ( R e + l )  I o~, 0~7 (2 .1)  
~ at --7" -g7 = or-'-~' 

where  Re =m/ (2~v)  i s  the Reynolds number .  

S teady-s ta te  solut ions of Eq. (2.1) have been examined in detai l  in [6]. The re  exis t  s eve r a l  methods for  
obtaining n o n - s t e a d y - s t a t e  solut ions.  A c h a r a c t e r i s t i c  n o n - s t e a d y - s t a t e  solution which, m o r e  than any other ,  
b r ings  out cont radic t ions ,  is the solut ion of the p r o b l e m  of r ec t i l i nea r  vor tex  diffusion in the p r e s e n c e  of a 
sink.  All t h e  methods ,  used in the ma jo r i t y  of p a p e r s  give the following solut ion of the p rob lem:  

�9 ~ r ;Re + 2" i ' - ' -T-- '  ~/'r' ) ] 

( 

__ ( ,)Re+2 

where  r (a) is  an Eu le r  g a m m a  function; 

(2.2) 

oo 

(a, z) x~-~e-=~dx is an incomplete  g a m m a  function. We a s s u m e  
Z 

that  the solut ion (2.2) extends a lso  to Re< - 2 .  As is shown in [6], and as  can  be s een  f r o m  the second fo rmula  
of (2.2), it is a solution of the p rob l em  of r ec t angu la r  vor tex  diffusion in the p r e s e n c e  of a source  only in the 
in terva l  - 2 < R e <  ~ .  The vor tex  intensi ty  in the in terva l  - ~  <Re<  - 2  r i s e s ,  in acco rdance  with (2.2). The 
r e a s o n  fo r  the e r roneous  nature  of [4, 5] is that t he re  the solution was obtained by pass ing  to the l imi t  r 0 ~  0 
in the solut ion for  r 0 = const ,  whe re  r0is  the radius  of a cyl inder ,  enclosing a s ingular i ty  at z e ro .  

In acco rdance  with [8], using the method of in t e rmed ia te  a sympto t i c s ,  the solutions can be continued be -  
yond the c r i t i ca l  value of the p a r a m e t e r .  We denote the l inear  d imension  by a .  We shall  s t a r t  f rom the equa-  
t ion  fo r  the  vor tex  ~z: 

! aQ t a~ a~'~z (2.3) 
7~ ai ~ - ( R e - l )  7 Or. Or" 

We shall  s eek  the solution of Eq. (2.3) in the f o r m  

i2 z = r~F(u),  (2.4) 

where  u= r2/(4vt).  Substituting (2.4) into (2.3), we obtain 

(2u)2F ' '- + [(2a - -  Re + 2) + (2u)l(2u)F' + a(zr - -  Re)F = 0. (2.5) 

The gene ra l  solution of Eq. (2.5) has the f o r m  

F = u -(2~-I~e+2)/4 e-~/2y(--(2~z - -  Re + 2)/4, Re/4, u), (2.6) 

where  y(k, m ,  x) is the solut ion of the Whit taker  equation 4x2y" = (x ~ - 4kx +4m 2 - 1)y, i .e . ,  the reduced f o r m  of 
a degenera te  h y p e r g e o m e t r i c  equation. To i so la te  the requi red  solution f r o m  formula  (2.6) we subst i tute the 
initial  conditions T=%o or  s =0 with r ~ 0 .  The final f o rmu la s  have the f o r m  

I - r { _  Re+2  r2~ 

- (2.7) 

, o,r - / " 

F r o m  the solut ion (2.7) it can  be s een  that  the intensi ty of the vor tex  d e c r e a s e s  not to zero ,  as in the 
ca se  Re > --2 [see  (2.2)], but down to a s t e a d y - s t a t e  vor t i ca l  solution [6] 

k-7-/ J' 

P , e + 2  ~ [  r ~ne 
tl ~" = - 2~', v F T )  " 
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If we solve Eq. (2.1) with the initial condition v 0 = T ~ / ( 2 x r )  with Re < --2, not with an internal  l imit ing 
cyl inder  but with a s ingular i ty  at ze ro ,  by the method of a Laplace  t r a n s f o r m ,  then we obtain the  solution (2.7). 
It can  be shown by the s a m e  method that  the asympto t i c  of any non- s t eady- s t a t e  p r o b l e m  is a s t e ady - s t a t e  
vor t i ca l  solution with Re< , 2 .  F r o m  the l a t t e r  fact  a conclusion could be drawn with r e spec t  to the m e c h -  
an i sm of the vor t ic i ty  intensif icat ion,  on the bas i s  of the instabi l i ty of the flow of a viscous  liquid, were  it 
not fo r  the following se r ious  objection:  At ze ro  the re  is a s ingular i ty ,  which, as has been  pointed out in s e v -  
e ra l  communica t ions ,  can  give r i s e  to instabi l i ty .  There fo re ,  we r e tu rn  to the p rob l em where  the re  is no 
s ingular i ty .  

w The model  used for  a desc r ip t ion  of vor t ica l  mot ions  in the a t m o s p h e r e  (a tornado,  waterspouts )  is 
obtained f r o m  a genera l  s t a tement  of the p r o b l e m  of Sec. 1, if for  the pr inc ipa l  flow we take the potent ial  r  
a (r2/2 - z2), descr ib ing  the flow at the c r i t i ca l  point,  and subst i tute into Eq. (1.3) 

a--~ ~-r ~r \ r "~r/" (3.1) 

We have the following boundary condit ions:  

at  infinity 

at the axis  

vo = 7/2~r[,~ = 0; (3.2) 

/)~}[r:0 = 0. (3.3) 

The s t e a d y - s t a t e  solution of Eq. (3.1) with the boundary conditions (3.2), (3.3) depends on a ,  if a ~0 ,  i .e. ,  
if the flow sp reads  out o v e r  a plane,  then 

? = 0; (3.4) 

if a < 0, i .e. ,  if t he re  is ascending flow, then 

v = w ( i  - e~ (3 .5)  

The development  of s t e a d y - s t a t e  vor t ica l  solutions with de te rmined  values of the p a r a m e t e r s  in such 
si tuat ions is a c h a r a c t e r i s t i c  f ac to r  [6]. The solution (3.5) was f i r s t  found in [9] and is used by many  authors ,  
fo r  example ,  for  the cons t ruc t ion  of app rox ima te  models  of a tornado o r  as  an example  of the exis tence  of 
s t e a d y - s t a t e  vor t i ca l  motions in a viscous  liquid. 

Non- s t eady- s t a t e  vor t ica l  solutions of Eq. (3.1) have not been found, p robab ly  for  the following r ea sons .  
The re  is no s e l f - s i m i l a r  solution for  Eq. (3.1). A Laplace  t r a n s f o r m  leads to an equation which can  be solved 
numer ica l ly .  Methods of in te rmedia te  a sympto t i c s  do not give the des i red  resu l t .  We apply a group ana lys i s  
to Eq. (3.1) [I0] .  Using the inf in i tes imal  ope ra to r  admit ted by (3.1) we obtain the c h a r a c t e r i s t i c  solution for  
this equation; this  ope ra t o r  has the f o r m  

I e2at 0 re2~t # X~ = ~- ~" ~- Tr" (3.6) 

The operator (3.6) corresponds to the single-parametric continuous group of transforms 

I t: -~ - -  2~- In (e-2~t - -  2o~), 

I r ' =  r (  t / 43.7) 
1 - -  2ae2at /" 

Using the t r a n s f o r m  (3.7), f r o m  the solution (3.5) we cons t ruc t  the non - s t eady - s t a t e  solution 

[ ,  (r, t) = u [ l _ e ~'( i-2~2at)- '] ,  

a"  a---rtt l - -2~e2at)-- t  (3.8) 
| f l z  (r,  t) = ~ ( i  - -  2 a e 2 a t ) - i e 2 V  " " 

The solution (3.8) can be used for  the solution of different  p r o b l e m s .  If the ma in  flow is descending a > 0, then 
it follows that  exp (2at) ->1 and 1 - 2~ -< 0. With a >  1[2, i .e. ,  with different  init ial  g iven values of T(r, 0), ex-  
p r e s s i o n s  (3.7) and (3.8) tend toward ze ro  when the t ime  t tends toward infinity; i .e. ,  they approach  the s t eady-  
s ta te  solut ion (3.4). The specia l  c a se  where  ~= 0.5 is a solution of the p r o b l e m  of r e c t i l i n e a r  vor t ica l  f i la -  
men t  diffusion in the p r e s e n c e  of a descend ing  flow above the plane z = 0. With an ascending main  flow a < 0, 
exp (2at)-< 1 and 1 - 2~ ->0; exp re s s ion  (3.8) tends toward the s t eady - s t a t e  solution (3.5), differing f r o m  zero .  
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The special  case  obtained with t~=0.5 r ep re sen t s  the diffusion of a vor t ical  f i lament where  the main flow is 
ascending.  The vor t ica l  f i lament  diffusion does not take place down to a ze ro  value of the vort ic i ty ,  but down 
to the s t eady-s t a t e  solution (3.5). By choice of the p a r a m e t e r  ~, the initial data for  7(r,  0) can be taken in 
such a way that 

0 < Ivo(r, 0)1 ~ e and 0 ~ ]f~z(r, O)l ~ 8, 

where  ~ is a p rev ious ly  given small  number.  For  this ,  the value of (~ must  sa t is fy  the condition 

1(7| - -  a)/[v(i --  2~)]1 ,~ 8 2. 

In the l a t t e r  case,  the vor t ic i ty  s t a r t s  to be concentra ted around the axis of rotation, down to the s t eady-s ta te  
solution (3.5). 

Since Eqs.  (1.3), (3.1) a r e  l inear ,  the l a t t e r  fact  can be regarded  f rom the point of view of hydrodynamic 
instabil i ty.  This resu l t  a rgues  that the flow of a viscous liquid with [$1[ =0 and de termined  values of the p a r a m -  
e t e r s  can be unstable with respec t  to vor t ica l  per turba t ions .  An explanation of the local izat ion and concen t ra -  
t ion of the vor t ic i ty  in a viscous liquid can be based on the mechanism of the in terac t ion  between viscous and 
iner t ia l  fo rces ,  with which, with some values of the p a r a m e t e r s  of the flow, equi l ibr ium is establ ished between 
them in a vor t ica l  flow. 
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